
Automatic Relocalisation for a Single-Camera Simultaneous
Localisation and Mapping System

Brian Williams, Paul Smith and Ian Reid
Department of Engineering Science, University of Oxford, UK

{bpw,pas,ian}@robots.ox.ac.uk

Abstract— We describe a fast method to relocalise a monoc-
ular visual SLAM (Simultaneous Localisation and Mapping)
system after tracking failure. The monocular SLAM system
stores the 3D locations of visual landmarks, together with alocal
image patch. When the system becomes lost, candidate matches
are obtained using correlation, then the pose of the camera
is solved via an efficient implementation of RANSAC using a
three-point-pose algorithm. We demonstrate the usefulness of
this method within visual SLAM: (i) we show tracking can
reliably resume after tracking failure due to occlusions, motion
blur or unmodelled rapid motions; (ii) we show how the method
can be used as an adjunct for a proposal distribution in a
particle filter framework; (iii) during successful trackin g we use
idle cycles to test if the current map overlaps with a previously-
built map, and we provide a solution to aligning the two maps
by splicing the camera trajectories in a consistent and optimal
way.

I. INTRODUCTION

This paper is concerned with the problem of real-time
localisation and mapping using only a single camera. We are
particularly concerned with the issue of robustness to such
real-world tracking conditions as occlusions or fast motion,
and to this end we provide a solution to re-localisation of the
camera when lost, and evaluate its use in different scenarios.

Though others [1], [2], [3] have investigated recursive
structure from motion using Extended Kalman Filtering (or
variants thereof), Davison [4] demonstrated the first real-time
version of this. Like the prior art, Davison used the Extended
Kalman Filter (EKF) to estimate the pose of the camera while
creating a sparse map of point features. Davison’s system
offers good performance when tracking, but becomes lost
during fast camera motions or occlusions, when a lack of
measurements of visual landmarks causes the camera pose
uncertainty to grow rapidly.

Pupilli and Calway [5] address the problem of robustness
to sudden motion and occlusions in the context of camera
localisation (though they do not have a rigorous approach to
mapping, so it not truly a ‘SLAM’ system). They achieve
a degree of robustness using the now standard technique of
filtering the state – in this case the camera pose – using a set
of particles to represent the possibly multimodal distribution
of the camera location. Their system is able to cope with
significant amounts of occlusion and camera shake by the
(random) scattering of particles that occurs naturally as
camera uncertainty increases. As soon as one of the particles
lands at a location sufficiently close to the true pose, it
receives high weight and the resampling process concentrates
the particles nearby.

A more rigorous approach to single-camera SLAM using
particles was presented by Eade and Drummond [6], who
implement the FastSLAM 2.0 algorithm [7] for a bearing-
only sensor. The benefit of the FastSLAM framework arises
via the Rao-Blackwellization [8] of the filter, which reduces
the computational complexity of filter updates toO(N)
(from O(N2) in the case of the EKF). However, the system
remains prone to tracking failure during rapid motions.

In this paper we make use of the fact that a SLAM system,
by its very nature, builds a map of the environment. Given
the three-dimensional points, and their corresponding image
projections, a well-known result [9] states that the pose of
the camera can be recovered (there may be as many as four
solutions for the pose, but importantly this is a finite number,
not a parametric family). We thus hypothesize matches
between map features and features found in an image in
order to localise the camera in a bottom-up fashion. Note
that in contrast to image-to-image matching such as used in
Nistèr’s [10] system, where five point correspondences are
sought, a map-to-image match requires only three.

Though this is unremarkable in itself, we demonstrate in
this paper how by using an efficient version of RANSAC
[11] we can achieve reliable, near-real-time localisation. As
well as the straightforward addition of automatic recovery
to Davison’s EKF method, we also show the utility of
this bottom-up approach in the context of particle filtering.
We further demonstrate how the pose recovery module can
greatly assist with the problem of map alignment in single-
camera SLAM. When sudden motion causes the camera
view to move to an unmapped location, our single camera
SLAM system automatically begins a new map. However
it is important to determine the position of this new map
relative to previously-mapped regions as soon as possible.
By detecting when the system has returned to a previously
mapped region using the pose recovery algorithm (running in
idle cycles during normal tracking), we show how tracking
the trajectory relative to both the current and the previous
map leads to a map alignment method well-suited to single-
camera SLAM.

The remainder of the paper is organised as follows: First,
we briefly describe Davison’s EKF-based single-camera
SLAM system. Then, the recovery module is outlined, and
results are given on its usefulness for both EKF- and particle-
filter-based systems. Finally, our method of map alignment
for a vision-based SLAM system which makes use of the
recovery module is shown.



1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 1. The EKF-based SLAM system of Davison [4] creates a mapof current features when tracking. The camera image is shownon the left, and the
three-dimensional map and camera location on the right. Theimage patches identifying each feature are shown and numbered below, corresponding with
the numbers in the image and map view.

II. EKF-BASED MONOSLAM

The automatic recovery module described in this paper
was implemented as an extension to the EKF-based SLAM
system developed by Davison [4], but the approach is general
and can be used for any vision-based system that uses point
features. We will outline Davison’s system to give a better
understanding of single-camera SLAM before the recovery
module is explained.

The pose of the camera,̂xp, is represented by a position
vector,r, and a quaternion,q:

x̂p =

(

r

q

)

=
(

x y z q0 qx qy qz

)T
,

and point features are represented by a 3D position vector:

ŷi =
(

x y z
)T

.

The total state estimate is represented as a multivariate
Gaussian with mean

x̂ =
(

x̂v ŷ
1

ŷ
2

. . .
)T

, (1)

and covariance

P =











Pxx Pxy1
Pxy2

. . .

Py1x Py1y1
Py1y2

. . .

Py2x Py2y1
Py2y2

. . .
...

...
...

. . .











. (2)

When each new frame arrives, predictions are made using
the pose estimate to determine a 3σ search ellipse in the
image for each feature; Davison calls this process ‘Active
Search’. Each feature stores an 11×11 image patch as a
descriptor, and correlation is performed between this patch
and the pixels in the search region to determine the actual
feature measurement in the image. The difference between
these observed feature locations and their predicted positions

is used by the EKF to update both the camera pose estimate
and the map. Fig. 1 shows Davison’s system tracking. The
three-dimensional camera pose estimate and the location of
the features in the map are shown on the right, the patch for
each feature is shown below, and the search regions for the
observed features in the image can be seen on the left.

Using Active Search is important to allow the system to
run in real time, because the cost of correlation across the
whole image is too high. Of course, the observations will
fail if the camera becomes occluded or the motion is too
fast (either causing motion blur or failing to conform to the
‘constant velocity’ motion model). With no measurements,
the pose of the camera becomes more uncertain, leading to
larger search regions. In theory, the search region should
still contain the feature, and those should later be matched
again and the system then recovers. In practice, this does
not happen: frequently, the system will find a patch in the
growing search region which looks similar enough to the true
feature but is not in fact correct. If this incorrect observation
is used, the map will be irretrievably corrupted. Therefore,
the EKF system cannot be trusted to recover on its own.

This motivates the use of our separate recovery module.
When the system has no successful observations, the recov-
ery algorithm is run, which will keep trying to determine
the camera pose using the map created so far. When the oc-
clusion or fast motions have ceased, the pose is determined,
and the EKF is reset without the danger of making incorrect
observations. In robotics, this problem (global localisation)
has been investigated before, but usually only in 2D using
range sensors e.g. [12].

III. FINDING THE CAMERA POSE

The recovery module generates candidate poses from
hypothesised matches between locations in the current frame
and the features in the map. A set of three potential matches



Fig. 2. Potential matches in the recovery image for the features from the
map of Fig. 1. Correlation is performed between the patch foreach map
feature and the ‘corners’ detected in this image. Correct matches (red) were
found for many of the features, but there were also many falsedetections
(blue) and failed detections, as well as multiple matches for some features.

is selected, and all the camera poses consistent with this set
are calculated using the three-point-pose algorithm. These
poses are evaluated by looking for consensus amongst the
other matches found in the image. If a pose with a large
consensus is found, that pose is assumed to be correct.

A. Finding Potential Matches

The map features in Davison’s system are initialised at re-
gions in the image where the response to the Shi-Tomasi [13]
corner detector is strong. Therefore, to find matches to these
features in the image, our system proceeds as follows. First,
the Shi-Tomasi detector is run across the whole image. Then,
an exhaustive correlation is performed between each of these
corner points and the image patches for the entire map. This
correlation is performed not only on the corner point, but also
within ±2 pixels since the precise location of the detected
corner point is to some extent view-dependent.

A number of potential matches to map features are found
in the image, as shown in Fig. 2. Note that not all the
matches are correct (e.g. feature 3 is matched to several
image locations). Also, matches were not found for some
of the map features present in the image (e.g. features 8, 9,
12 and 13) due to the Shi-Tomasi corner not being detected.

B. Selecting Sets of Matches

Sets of three matches are chosen randomly using only two
constraints:

1) No two matches can come from the same map feature.
2) No two matches can come from the same corner point

in the image.
This random selection was found to be sufficient for the
size of maps we considered, but as map size increases, the
number of combinations of three matches rapidly increases.
More intelligent ways to select sets among a large number of
possibilities (for example co-visibility and correlationscore)
were explored, as will be discussed in section V-C.

Imageplane

Xc

Yc

Zc

Camera
optical
centre

hA
yA

hB

yB

hC

yC

Fig. 3. The three-point-pose algorithm [9] finds up to four valid poses for
the camera given the position in 3D (yA , yB andyC ) of three points and
their corresponding projections in the image (hA , hB andhC ).

C. The Three-Point-Pose Algorithm

The three-point-pose algorithm is used to determine the
camera pose indicated by each set of matches. Because the
problem is underconstrained, up to four poses for the camera
are valid given the known arrangement of three points in 3D
(yA, yB andyC ) and their image projections (hA, hB and
hC ). Several methods exist [9], of which we have selected
the method of Fischler and Bolles [14] for its numerical
stability. The algorithm involves solving a fourth-degree
polynomial which is found by rearranging the simultaneous
equations specified by the geometry shown in Fig. 3. The
triangle linking the points is known from the map geometry,
and the angles to the points are known from the image
projections. The four-fold ambiguity in pose is resolved by
evaluating all the potential poses.

D. Evaluating Potential Poses

For each candidate pose, the image projections of the
remaining map features are calculated. If this pose is correct,
the projections will be at the true locations in the image for
those features, and it is likely that a match will have been
found for that feature at that point (Fig. 4). By checking
how many matches are found at the locations predicted
by the pose, a consensus score is given to each pose. In
our experience to date, only rarely is there more than one
successful prediction and so we take a pose to be correct
if it successfully predicts two or more features. Of course,
this fails in the case where the map contains regions with
similar appearence and geometry. Though the photometric
information inherent in our features renders them more
distinctive than, say, geometric data such as laser scans –
reducing the problem of multiple solutions to the point where
we have not regularly encountered this – we recognise that in
larger environments this is inevitable. One possible solution
– not implemented – would be to use multiple separate
EKFs with each hypothesis until the ambiguity is resolved.
Alternatively, particle filters provide a natural mechanism for
the maintenance of many hypotheses. These remain for future
work.

To speed up the evaluation, theTd,d test developed by
Matas [11] is used. When the sets of three matches are



Fig. 4. The evaluation of one of the poses given by the three-point-pose
algorithm for the three matches forming the white triangle (features 2, 4,
and 5). The projections for the other map features accordingto this pose
are shown as yellow circles. The pose finds matches nearby forfive of the
projections (features 1, 3, 6, 7, 10), and so is considered tobe the correct
pose.

chosen, a fourth feature is also randomly selected as an
evaluation feature. This feature is the first to be projected
to evaluate the pose. If this prediction does not find a match
then that pose is abandoned. It is possible that good poses
are thrown away, but because of the great speed-up this test
gives, many more poses are checked.

A time limit is also set for the algorithm. If the correct
pose is not found within this time limit then the algorithm
gives up: a new frame is taken from the camera and the
algorithm is run again. This ensures that, in cases when the
camera is occluded for a short period of time, new frames are
periodically tried. A time limit of 200ms was chosen which
was felt to be enough time to try a reasonable number of
poses. If the time limit were much higher, the pose could be
too far out of date when found.

IV. UPDATING THE SLAM SYSTEM

Having recovered the camera pose, for continued correct
operation of the EKF, the uncertainty in this pose and the
coupling to the map must be correctly modelled. The features
that were not used in the three-point-pose algorithm are
uncorrelated to the new camera pose so the corresponding
covariance terms,Pxy, are set to zero. The uncertainty in the
camera pose and the covariance terms which couple this to
the three features could be determined by first order pertur-
bation. Likewise this estimate could be improved via a batch
estimation using all the matches. Though straightforward,
such a procedure essentially replicates the machinery of the
EKF itself up to the linearisation errors in the EKF. Hence,
a correct and expedient solution is obtained by feeding the
three image measurements into the Kalman filter, having first
set the camera pose uncertainty sufficiently large that it can
be treated essentially as uninformative. Note that becausethe
innovation will be identically zero for the new pose, this will
not result in any alteration to the pose estimate.

Fig. 5. To test the recovery module, sudden motion was simulated by
removing the intermediate frames as the camera panned left from the image
on the left to that on the right.

Fig. 6. The pose estimates for the ordinary EKF (square) and the EKF with
the recovery module (diamond) are shown after the simulatedsudden motion
in Fig. 5. The ‘ground truth’ (circle) is found by running theEKF without
removing the intermediate frames. The recovery module immediately detects
the failure of observations and suggest a pose close enough to the true pose
that the EKF can correct it and continue. Without the recovery module,
the EKF assumes it still at the old pose, and makes incorrect observations
leading to divergence.

V. POSE RECOVERY RESULTS

A. Pose Recovery for the Extended Kalman Filter

To test the recovery, module Davison’s system [4] was
run on an image sequence to build a map. At one point
in the sequence, the camera pans left so that it observes a
previously-mapped area. Sudden movement was simulated
by removing the intermediate frames (Fig. 5). Fig. 6 shows
the robustness to this sudden movement for the EKF system
with (diamond) and without (square) the recovery module.
An estimated ground truth (circle) is given by running the
EKF system without removing the intermediate frames.

Unsurprisingly, because it has no measurements, the EKF
fails catastrophically. In more detail, what actually happens
is that, in the absence of observations, the EKF continues
to predict the camera location with growing uncertainty.
However, this prediction is sufficiently far from the true
value that either no further measurements are ever possible
or erroneous matches are acquired. The result in either case
is rapid divergence.

In contrast, when using the recovery module, as soon as
no measurements are available, recovery is initiated. When
restarted with the recovered pose, the EKF converges quickly



(a) ‘Ground truth’: Pose and feature observations for the EKF system when
it has not undergone the simulated sudden motion.

(b) With recovery: The system has relocalised after the sudden motion, with
a pose very close to the ‘ground truth’.

(c) Without recovery: The EKF fails after sudden motion. Many of the
attempted observations have failed (blue), and the one ’successful’ obser-
vation is where it has mistaken the corner of the office chair for the black
bag (poor data association). The system believes it is stillfacing the old
direction even though almost no features match.

Fig. 7. Recovery for EKF SLAM. The estimates for the map and camera
are shown with3σ uncertainty ellipsoids. The colours indicate the camera
(cyan), a successfully-observed feature (red), an unsuccessfully-observed
feature (blue), and a feature which was not chosen for observation (yellow).

to its correct value again. The camera pose estimates after
the simulated sudden movement can be seen in Fig. 7. The
pose estimate for the system with the recovery module is
close to the ‘ground truth’ estimate where the frames were
not removed.

B. Pose Recovery for a Particle Filter

Data-driven localisation methods such as the one we have
described also fit naturally into a particle-filter framework.
At each iteration in a particle filter algorithm, particles are
drawn from a proposal distribution and then reweighted
using image measurements so that the particle set is a valid
approximation of the true posterior. A typical proposal distri-
bution takes into account the system’s dynamical model and
associated uncertainty. When the system is “lost”, recovery
occurs if a particle sampled from this proposal distribution
coincides with the true pose. The likelihood of this is in-
creased dramatically if the proposal distribution incorporates
data driven samples in addition to those generated from the
dynamical prior. This was suggested by (amongst others)

(a) The particle filter has locked onto the shadow instead of the black
rectangle. A single particle is created using the pose suggested by the
recovery module. The search region for each particle is drawn red if the
correlation was successful and blue if it failed.

(b) Resampling causes the whole particle set to converge on the correct
pose which was suggested by the recovery module.

Fig. 8. Recovery for Particle Filter

[15] and here we demonstrate our recovery module as a
sample generator.

A particle filter was implemented to track the camera pose
using observations of the four corners of a known black
rectangle. At times, the filter lost track and would lock on
to the shadow of the sheet which looked similar. A larger
number of particles (we used only 25) could be used with
a more noisy motion model to pull the system out of this
local minimum, but instead, we used the recovery module.
Periodically, the recovery module is run and a single particle
representing the suggested pose is added into the particle set.
In Fig. 8(a) this single particle can be seen away from the
particle cluster. The predicted observations in the image for
the whole particle set can be seen, indicating that the rest
of the particle set has locked onto the shadow while the
single particle from the recovery module has locked onto
the true rectangle. After resampling, the whole particle set
has a better pose estimate since the single particle, with four
successful observations, received a much higher weight.

The recovery module could thus be useful for FastSLAM-
based systems as well as the EKF-based one we have used.
However, there is a difficulty in deciding exactly how to
incorporate the pose suggestion in FastSLAM since the
particles represent trajectories with a map estimate rather
than just pose.

C. Accuracy, Reliability and Timing

To test the performance of the recovery module we used
Davison’s system to perform SLAM on a 45-second se-
quence while the recovery module was run at each frame
without updating the SLAM state. Fig. 9 shows the total time
taken to recover the pose (red bars) as the size of the map
(blue line) increases. The gaps in the sequence are where



the pose was not recovered. In this sequence, the recovery
algorithm succeeded within the time limit of 200ms in 84%
of the frames. The cases where recovery was not possible
were due to an insufficient number of correct matches being
found, while due to the random nature of the system there
will always be cases where a correct choice of matches are
not tried within the time limit.

In the later half of the sequence, the time taken to find the
pose becomes more erratic. With a larger map, more matches
are found, leading to a much larger number of combinations
of three matches with which to determine potential poses.
Therefore, for larger maps, a method should be used which
gives a higher probability of selecting a correct set of three
matches. We explored weighting the selection according to
co-visibility and correlation score, but did not find this tobe
computationally effective for small maps.

The time taken for correlation to find potential matches
(black bars) scales linearly with the size of the map and
the number of Shi-Tomasi features detected in the recovery
image. For larger maps, a feature matching algorithm which
does not scale with map size would be required.

A breakdown of the timing for each aspect of the recovery
on a typical run (frame 1200) is shown in the table below.
Note that the time for generating and evaluating poses can
vary, due to the random pose hypothesis creation.

Corner detection 4 ms
Correlation 88 ms
Three-point-pose and evaluation 5* ms
Overhead 1 ms
Total 98 ms

For the pose to be useful, a low error in the image
projection is more important than in the 3D position or
orientation because, after recovery, the SLAM system can
correct the pose if the features are found near where they
are expected in the image. The search regions are typically
of radius of ten pixels, and for this 45-second sequence,
the projection error was within ten pixels in 93% of the
successful recoveries.

Davison’s system, when combined with the recovery mod-
ule, was found to be very robust to both sudden motion and
occlusion. The module is fast enough to allow the combined
system to be used in real-time although there can be a small
lag, after becoming lost, while the pose is recovered.

VI. MAP ALIGNMENT USING THE RECOVERY
MODULE

In the normal running of the SLAM system, a quick
rotation can cause the observations to suddenly be of an
unmapped region of the world. Pose recovery is of course
not possible at this stage, and instead the SLAM system
should begin a fresh map. Crucially, if the camera returns to
an area where the old map is visible, this should be detected
and the relative pose of the two maps should be found, so
that the maps can be joined.

While the system is making its fresh map, the recovery
module can be run periodically to try to detect the camera

Fig. 9. The recovery module was run on every frame of a 45-second
sequence. The number of features in the map (blue line) growsas the SLAM
system runs. The total time taken (red bars) by the recovery module is shown
when it was successful (in 84% of frames). A large fraction ofthis time is
taken up by the correlation to find feature matches (black bars).

pose relative to the old map. When this overlap is detected,
the difference between the current pose estimate and the re-
covered pose indicates the relative orientation and translation
of the two maps. However, this is not enough to align the
maps in a single-camera system due to the ambiguity in scale.

Alternatively, the map features themselves could be used
for the alignment. This method would be robust to scale
difference, but unfortunately is not well suited to real-time
single-camera SLAM systems, where the maps created are
purposely very sparse so that the tracking can be done in real
time. With such sparse maps, it is unlikely that there will be
any features common to both maps, and a minimum of three
shared features would be needed to specify the alignment.

Instead, we have chosen to use a camera trajectory
common to the two coordinate frames. When the recovery
module detects that the camera has returned to a region
in the old map, the recovered pose is used to initialise a
second EKF to track the camera in the old map. Meanwhile,
the camera motion is still tracked in the current map using
the first EKF. The camera trajectory in the two maps will
be at different orientations and scales to suit the map, but
crucially, the actual camera motion is identical. By finding
the transformation between these trajectories, we find the
transformation needed to align the two maps.

Note that a trajectory in this context is a sequence of
6D poses (position and orientation), not simply a sequence
of positions. To obtain an initial estimate of the alignment
transformation, the orientation of the cameras along the
trajectory is used to estimate the rotation between the two.
A value for the scale is then obtained by measuring the
overall length of the trajectories. Finally, an estimate for
the translation offset is determined given the other four
parameters. This initial estimate is refined via non-linear
optimisation of the Mahalanobis distance between pairs of
poses in the respective trajectories.

We used Davison’s system to make a map using the
sequence shown in Fig. 5. Initially, the camera makes a map
of the region to the left of the office chair. When the camera
suddenly moves to the region to the right of the chair, a
new map is begun. Later in the sequence, the camera pans
back to the first region as shown in Fig. 5. At this point,
the recovery algorithm finds a pose for the camera in the



−1.5−1−0.500.511.52
−0.5

0

0.5

1

1.5

2

x (m)

z 
(m

)

(a) Maps before alignment.

0

0.1

0.2

0.3
−0.04

0.02

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

x (m)

z 
(m

)

(b) Trajectories before alignment.

−1.5−1−0.500.511.5
−0.5

0

0.5

1

1.5

2

2.5

x (m)

z 
(m

)

(c) Aligned maps.

0.30.320.340.36−0.06
−0.04

−0.02
0

0.02

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

x (m)
y (m)

z 
(m

)

(d) Aligned trajectories.

Fig. 10. Map alignment for two maps generated from differentparts of the sequence in Fig. 5. When the recovery module detects that a previously
mapped region is visible, the system runs SLAM simultaneously in the current (red×) and the previous (cyan +) map. The trajectory estimated relative
to the two maps (b) can be aligned (d) to find the relative pose and scale of the two maps. After alignment (c), the line of features from both mapslying
on and near the wall of the room can clearly be made out.

original map made of this region indicating that the maps
have begun to overlap.

After the overlap is detected, the system tracks the camera
in each map using a different EKF. Fig. 10 shows a top-down
view of the estimated trajectory in the current map (red×)
and in the old map (cyan+). These two trajectories are then
aligned to find the joined map shown on the right of Fig. 10.
The line of features lying on and near the wall of the room
can clearly be made out.

The current SLAM system takes 10ms per frame, leaving
23ms to run the recovery module. At this speed, a map
overlap check could be made at 3Hz. Once an overlap is
found, there is also enough time to run the second EKF
needed for the trajectory alignment.

VII. CONCLUSIONS

The recovery module presented here finds the pose of a
camera using a map of point features created by a single-
camera SLAM system. Correlation is used to find potential
matches in the current image for features in the map. These
matches are then used to determine candidate poses via the
three-point-pose algorithm. Pose hypotheses are verified by
projecting the other map features in a RANSAC framework.

The module was shown to reliably relocalise an EKF-
based SLAM system after sudden movement or occlusion,
thus making the system much more robust. We also showed
how the module could be used to aid a particle filter tracking
system by creating a small number of extra particles ac-
cording to the recovered pose. Finally, the module was used
while tracking to detect when the camera returned to a region
previously seen in another map, and a method was shown
which aligns the two maps using the camera trajectory. This
alignment is not dependent on common map features and
is able to determine the relative scale between the maps,
both of which are a particular challenge for single-camera
SLAM. This system is useful not only for independent map
alignment, but could also be used to recognise loop closures.

VIII. ACKNOWLEDGEMENTS

This work has benefited greatly for many insightful con-
versations with members – past and present – of the Active

Vision Lab and the GRPTR team at University of Zaragoza.
We gratefully acknowledge the financial support of the
EPSRC (grant GR/T24685 and a studentship to BPW) and
the Royal Society (International Joint Project).

REFERENCES

[1] C. G. Harris. Tracking with rigid models. InActive Vision. MIT Press,
1992.

[2] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Structure from motion
causally integrated over time.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(4):523–535, 2002.

[3] P. F. McLauchlan. A batch/recursive algorithm for 3D scene recon-
struction. InProc. IEEE Conference on Computer Vision and Pattern
Recognition, pages 738–743, 2000.

[4] A. J. Davison. Real-time simultaneous localisation andmapping with
a single camera. InProc. IEEE International Conference on Computer
Vision, pages 1403–1410, 2003.

[5] M. Pupilli and A. Calway. Real-time camera tracking using a particle
filter. In Proc. British Machine Vision Conference, pages 519–528,
2005.

[6] E. Eade and T. Drummond. Scalable monocular SLAM. InProc.
IEEE Conference on Computer Vision and Pattern Recognition, pages
469–476, 2006.

[7] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. InProc. International Joint
Conference on Artificial Intelligence, pages 1151–1156, 2003.

[8] A. Doucet, N. Freitas, K. Murphy, and S. Russell. Rao-Blackwellised
particle filtering for dynamic bayesian networks. InProc. Conference
on Uncertainty in Artificial Intelligence, pages 176–183, 2000.

[9] R. M. Haralick, C. Lee, K. Ottenberg, and M. Nolle. Review
and analysis of solutions of the three point perspective problem.
International Journal of Computer Vision, 13(3):91–110, 1994.

[10] D. Nistér. An efficient solution to the five-point relative pose
problem. InProc. IEEE Conference on Computer Vision and Pattern
Recognition, pages 195–202, 2003.

[11] J. Matas and O. Chum. Randomized RANSAC withtd,d test. Image
and Vision Computing, 22(10):837–842, 2004.

[12] J. Neira, Tardós J. D., and J. A. Castellanos. Linear time vehicle
relocation in SLAM. InProc. International Conference on Robotics
and Automation, pages 427–433, 2003.

[13] J. Shi and C. Tomasi. Good features to track. InProc. IEEE
Conference on Computer Vision and Pattern Recognition, pages 593–
600, 1994.

[14] M. A. Fischler and R. C. Bolles. RANdom SAmple Consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography.Communications of the ACM, 24(6):381–395,
1981.

[15] S. Thrun, D. Fox, and W. Burgard. Monte carlo localisation with
mixture proposal distribution. InAAAI National Conference on
Artificial Intelligence, pages 859–865, 2000.


