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Abstract— We describe a fast method to relocalise a monoc- A more rigorous approach to single-camera SLAM using
ular visual SLAM (Simultaneous Localisation and Mapping) particles was presented by Eade and Drummond [6], who
system after tracking failure. The monocular SLAM system jpjement the FastSLAM 2.0 algorithm [7] for a bearing-
stores the 3D locations of visual landmarks, together with éocal | The b fit of the EastSLAM f K ari
image patch. When the system becomes lost, candidate matshe O_n y sensor. € ene_ ! (_) € Fas ) ram_ewor arses
are obtained using correlation, then the pose of the camera Via the Rao-Blackwellization [8] of the filter, which redwce
is solved via an efficient implementation of RANSAC using a the computational complexity of filter updates @(N)
three-point-pose algorithm. We demonstrate the usefulnesof  (from O(IN?) in the case of the EKF). However, the system
this method within visual SLAM: () we show tracking can  ramains prone to tracking failure during rapid motions.

reliably resume after tracking failure due to occlusions, notion .
blur or unmodelled rapid motions; (ii) we show how the method In this paper we make use of the fact that a SLAM system,

can be used as an adjunct for a proposal distribution in a DY its very nature, builds a map of the environment. Given
particle filter framework; (iii) during successful trackin g we use the three-dimensional points, and their correspondingama

idle cycles to test if the current map overlaps with a previosly-  projections, a well-known result [9] states that the pose of
built map, and we provide a solution to aligning the two maps  {ha camera can be recovered (there may be as many as four
by splicing the camera trajectories in a consistent and optnal . . 2 .
way. solutions for the pose, k_)ut importantly this is a f|_n|te numbe
not a parametric family). We thus hypothesize matches
|. INTRODUCTION between map features and features found in an image in
This paper is concerned with the problem of real-tim@rder to localise the camera in a bottom-up fashion. Note
localisation and mapping using only a single camera. We atkat in contrast to image-to-image matching such as used in
particularly concerned with the issue of robustness to sudiiistér's [10] system, where five point correspondences are
real-world tracking conditions as occlusions or fast mwotio sought, a map-to-image match requires only three.
and to this end we provide a solution to re-localisation ef th Though this is unremarkable in itself, we demonstrate in
camera when lost, and evaluate its use in different scenarishis paper how by using an efficient version of RANSAC
Though others [1], [2], [3] have investigated recursivg1l1l] we can achieve reliable, near-real-time localisatids
structure from motion using Extended Kalman Filtering (omwell as the straightforward addition of automatic recovery
variants thereof), Davison [4] demonstrated the first teaé  to Davison’s EKF method, we also show the utility of
version of this. Like the prior art, Davison used the Extehdethis bottom-up approach in the context of particle filtering
Kalman Filter (EKF) to estimate the pose of the camera whilé/e further demonstrate how the pose recovery module can
creating a sparse map of point features. Davison’s systegneatly assist with the problem of map alignment in single-
offers good performance when tracking, but becomes losamera SLAM. When sudden motion causes the camera
during fast camera motions or occlusions, when a lack afiew to move to an unmapped location, our single camera
measurements of visual landmarks causes the camera p&&&AM system automatically begins a new map. However
uncertainty to grow rapidly. it is important to determine the position of this new map
Pupilli and Calway [5] address the problem of robustneslative to previously-mapped regions as soon as possible.
to sudden motion and occlusions in the context of cameBy detecting when the system has returned to a previously
localisation (though they do not have a rigorous approach taapped region using the pose recovery algorithm (running in
mapping, so it not truly a ‘SLAM’ system). They achieveidle cycles during normal tracking), we show how tracking
a degree of robustness using the now standard techniquetloé trajectory relative to both the current and the previous
filtering the state — in this case the camera pose — using a seap leads to a map alignment method well-suited to single-
of particles to represent the possibly multimodal distiitou camera SLAM.
of the camera location. Their system is able to cope with The remainder of the paper is organised as follows: First,
significant amounts of occlusion and camera shake by thwee briefly describe Davison’s EKF-based single-camera
(random) scattering of particles that occurs naturally aSLAM system. Then, the recovery module is outlined, and
camera uncertainty increases. As soon as one of the partictesults are given on its usefulness for both EKF- and patticl
lands at a location sufficiently close to the true pose, filter-based systems. Finally, our method of map alignment
receives high weight and the resampling process concestrafor a vision-based SLAM system which makes use of the
the particles nearby. recovery module is shown.
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Fig. 1. The EKF-based SLAM system of Davison [4] creates a ofagurrent features when tracking. The camera image is stmwthe left, and the

three-dimensional map and camera location on the right.iftage patches identifying each feature are shown and n@ab®low, corresponding with
the numbers in the image and map view.

[l. EKF-BASED MONOSLAM is used by the EKF to update both the camera pose estimate
The automatic recovery module described in this papénd the map. Fig. 1 shows Davison's system tracking. The
was implemented as an extension to the EKF-based sLAlliree-dimensional camera pose estimate and the location of
system developed by Davison [4], but the approach is genethf features in the map are shown on the right, the patch for
and can be used for any vision-based system that uses pdtach feature is shown below, and the search regions for the
features. We will outline Davison's system to give a bettepbserved features in the image can be seen on the left.
understanding of single-camera SLAM before the recovery USing Active Search is important to allow the system to

module is explained. run in real time, because the cost of correlation across the
The pose of the camera,,, is represented by a position Whole image is too high. Of course, the observations will
vector,r, and a quaterniong: fail if the camera becomes occluded or the motion is too
fast (either causing motion blur or failing to conform to the
&, = < r ) =(z ¥y 2 @ @& @ @ )T7 ‘constant velocity’ motion model). With no measurements,

q the pose of the camera becomes more uncertain, leading to

and point features are represented by a 3D position vectolarger search regions. In theory, the search region should
still contain the feature, and those should later be matched

~ T
Y; = ( Ty z ) : again and the system then recovers. In practice, this does
The total state estimate is represented as a multivaridi@t happen: frequently, the system will find a patch in the
Gaussian with mean growing search region which looks similar enough to the true
. feature but is not in fact correct. If this incorrect obsdiaa
&= (& G, G -.-) , (1) is used, the map will be irretrievably corrupted. Therefore

the EKF system cannot be trusted to recover on its own.

and covariance . ;
This motivates the use of our separate recovery module.

Pow  Payy Pay, ... When the system has no successful observations, the recov-
p_ Pyiz Pyiys Pyiyn -+ @ ery algorithm is run, which will keep trying to determine
| Puez Puayr Pyoye oo |- the camera pose using the map created so far. When the oc-

clusion or fast motions have ceased, the pose is determined,
] o “and the EKF is reset without the danger of making incorrect
When each new frame arrives, predictions are made UsiR@servations. In robotics, this problem (global localisa)

the pose estimate to determine a 8earch ellipse in the 55 peen investigated before, but usually only in 2D using
image for each feature; Davison calls this process ACtiVeange sensors e.g. [12].

Search’. Each feature stores anxtil image patch as a

descriptor, and correlation is performed between thistpatc I1l. FINDING THE CAMERA POSE

and the pixels in the search region to determine the actualThe recovery module generates candidate poses from
feature measurement in the image. The difference betwebppothesised matches between locations in the currenefram
these observed feature locations and their predictedipasit and the features in the map. A set of three potential matches
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Fig. 3. The three-point-pose algorithm [9] finds up to foulid/@oses for
the camera given the position in 3B 4, yg andyc) of three points and
their corresponding projections in the imade4, hp and h¢).

Fig. 2. Potential matches in the recovery image for the featrom the ~C. The Three-Point-Pose Algorithm

map of Fig. 1. Correlation is performed between the patchefweh map CAAint : : ;

feature and the ‘corners’ detected in this image. Corredties (red) were The three p_0|n_t pose algorlthm is used to determine the

found for many of the features, but there were also many faéections Camera pose indicated by each set of matches. Because the

(blue) and failed detections, as well as multiple matchesdéme features. problem is underconstrained, up to four poses for the camera
are valid given the known arrangement of three points in 3D

. . : . 4, Yp andy) and their image projection(s, hp and
is selected, and all the camera poses consistent with this %C). Several methods exist [9], of which we have selected

are calculated using the thrge-pomt-pose algorithm. &he e method of Fischler and Bolles [14] for its numerical
poses are evaluated by looking for consensus amongst tse

X . : ability. The algorithm involves solving a fourth-degree
other matches found in the image. If a pose with a large . 2 . .
. . polynomial which is found by rearranging the simultaneous
consensus is found, that pose is assumed to be correct.

equations specified by the geometry shown in Fig. 3. The
A. Finding Potential Matches triangle linking the points is known from the map geometry,

The map features in Davison’s system are initialised at r@nd the angles to the points are known from the image
gions in the image where the response to the Shi-Tomasi [1B]ojections. The four-fold ambiguity in pose is resolved by
corner detector is strong. Therefore, to find matches teethegvaluating all the potential poses.
features in the image, our system proceeds as follows, Firg
the Shi-Tomasi detector is run across the whole image. Then;
an exhaustive correlation is performed between each oéthes For each candidate pose, the image projections of the
corner points and the image patches for the entire map. TH@Maining map features are calculated. If this pose is cgrre
correlation is performed not only on the corner point, babal the projections will be at the true locations in the image for
within +2 pixels since the precise location of the detectethose features, and it is likely that a match will have been
corner point is to some extent view-dependent. found for that feature at that point (Fig. 4). By checking

A number of potential matches to map features are fourfifpw many matches are found at the locations predicted
in the image, as shown in Fig. 2. Note that not all théy the pose, a consensus score is given to each pose. In
matches are correct (e.g. feature 3 is matched to sevefalr experience to date, only rarely is there more than one
image locations). Also, matches were not found for somguccessful prediction and so we take a pose to be correct
of the map features present in the image (e.g. features 8,iBit successfully predicts two or more features. Of course,
12 and 13) due to the Shi-Tomasi corner not being detectelftis fails in the case where the map contains regions with
. similar appearence and geometry. Though the photometric
B. Selecting Sets of Matches informating: inherent in gur featﬁres re?\ders tﬁem more

Sets of three matches are chosen randomly using only twistinctive than, say, geometric data such as laser scans —
constraints: reducing the problem of multiple solutions to the point véner

1) No two matches can come from the same map featur@e have not regularly encountered this — we recognise that in

2) No two matches can come from the same corner poifdrger environments this is inevitable. One possible gmiut

in the image. — not implemented — would be to use multiple separate
This random selection was found to be sufficient for th&KFs with each hypothesis until the ambiguity is resolved.
size of maps we considered, but as map size increases, fiternatively, particle filters provide a natural mechamnifor
number of combinations of three matches rapidly increasethie maintenance of many hypotheses. These remain for future
More intelligent ways to select sets among a large number wfork.
possibilities (for example co-visibility and correlatisaore) To speed up the evaluation, tl¥§, 4 test developed by
were explored, as will be discussed in section V-C. Matas [11] is used. When the sets of three matches are

Evaluating Potential Poses



Fig. 5. To test the recovery module, sudden motion was siedilfay
removing the intermediate frames as the camera panneddeftthe image
on the left to that on the right.

Camera Pose Estimates After Simulated Sudden Motion

0.4F 1
Map of Features
After
) ) . ) 0.21 frame gap ’
Fig. 4. The evaluation of one of the poses given by the thméetpose Before
algorithm for the three matches forming the white triandteatures 2, 4, T o U= frame gap ,
and 5). The projections for the other map features accortiinthis pose = Recovered
are shown as yellow circles. The pose finds matches nearbfwéoof the M pose
projections (features 1, 3, 6, 7, 10), and so is considerduetthe correct =02 1
pose. - After 1 sec
-0.4 without recovery, il
) the EKF estimate
chosen, a fourth feature is also randomly selected as a4  diverges T After 3 sec
evaluation feature. This feature is the first to be projected ‘ ‘ . ‘ ‘ ‘ ‘

to evaluate the pose. If this prediction does not find a matct 0z 0 02 "2'2}1) o 8 e

then that pose is abandoned. It is possible that good poses

are thrown away, but because of the great speed-up this &t 6. The pose estimates for the ordinary EKF (square) e K with
. the recovery module (diamond) are shown after the simukielden motion
gives, many more poses are checked.

’ A ) in Fig. 5. The ‘ground truth’ (circle) is found by running tieKF without
A time limit is also set for the algorithm. If the correct removing the intermediate frames. The recovery module idiately detects

pose is not found within this time limit then the algorithmthe failure of observations and suggest a pose close enoutjke true pose
. . f is tak f th d tthat the EKF can correct it and continue. Without the recpwaiodule,
gives up. a new irame IS taken ifrom the camera an nﬁe EKF assumes it still at the old pose, and makes incortestéreations

algorithm is run again. This ensures that, in cases when th@ading to divergence.

camera is occluded for a short period of time, new frames are

periodically tried. A time limit of 200ms was chosen which

was felt to be enough time to try a reasonable number of V. POSE RECOVERY RESULTS
poses. If the time limit were much higher, the pose could bg pyge Recovery for the Extended Kalman Filter

too far out of date when found. )
To test the recovery, module Davison’s system [4] was

IV. UPDATING THE SLAM SYSTEM run on an image sequence to build a map. At one point

Having recovered the camera pose, for continued correitt the sequence, the camera pans left so that it observes a
operation of the EKF, the uncertainty in this pose and thpreviously-mapped area. Sudden movement was simulated
coupling to the map must be correctly modelled. The featurdyy removing the intermediate frames (Fig. 5). Fig. 6 shows
that were not used in the three-point-pose algorithm athe robustness to this sudden movement for the EKF system
uncorrelated to the new camera pose so the correspondingh (diamond) and without (square) the recovery module.
covariance terms?,,,, are set to zero. The uncertainty in theAn estimated ground truth (circle) is given by running the
camera pose and the covariance terms which couple this BKF system without removing the intermediate frames.
the three features could be determined by first order pertur- Unsurprisingly, because it has no measurements, the EKF
bation. Likewise this estimate could be improved via a batcfails catastrophically. In more detail, what actually hapg
estimation using all the matches. Though straightforwards that, in the absence of observations, the EKF continues
such a procedure essentially replicates the machineryeof tto predict the camera location with growing uncertainty.
EKEF itself up to the linearisation errors in the EKF. HenceHowever, this prediction is sufficiently far from the true
a correct and expedient solution is obtained by feeding thalue that either no further measurements are ever possible
three image measurements into the Kalman filter, having first erroneous matches are acquired. The result in either case
set the camera pose uncertainty sufficiently large thatrit cas rapid divergence.
be treated essentially as uninformative. Note that becdugse In contrast, when using the recovery module, as soon as
innovation will be identically zero for the new pose, thidlwi no measurements are available, recovery is initiated. When
not result in any alteration to the pose estimate. restarted with the recovered pose, the EKF converges quickl



(a) ‘Ground truth’: Pose and feature observations for th&Bltstem when () The particle filter has locked onto the shadow insteadhef lilack

it has not undergone the simulated sudden motion. rectangle. A single particle is created using the pose sigdeby the
: recovery module. The search region for each particle is dreed if the

correlation was successful and blue if it failed.

(b) With recovery: The system has relocalised after the snddotion, with
a pose very close to the ‘ground truth’.
(b) Resampling causes the whole particle set to convergehercarrect

pose which was suggested by the recovery module.

Fig. 8. Recovery for Particle Filter

[15] and here we demonstrate our recovery module as a
sample generator.
A particle filter was implemented to track the camera pose
_ _ _ using observations of the four corners of a known black
(c) Without recovery: The EKF fails after sudden motion. Maof the le. At i he fil | K d Id lock
attempted observations have failed (blue), and the oneésistul’ obser- rectangle. At imes, the filter O.St track an _Wc_)u ock on
vation is where it has mistaken the corner of the office chairtie black to the shadow of the sheet which looked similar. A larger
bag (poor data association). The system believes it isfatiihg the old number of particles (We used only 25) could be used with
direction even though almost no features match. . . .
a more noisy motion model to pull the system out of this
Fig. 7. Recovery for EKF SLAM. The estimates for the map anwea  local minimum, but instead, we used the recovery module.
are shown with3c uncertainty ellipsoids. The colours indicate the camergperiodically, the recovery module is run and a single plartic
(cyan), a successfully-observed feature (red), an unsafidey-observe ) h d is added i h icl
feature (blue), and a feature which was not chosen for ohsenv(yellow). repr?sem'”g t ) e ?queSte .pose IS added Into the pasicle s
In Fig. 8(a) this single particle can be seen away from the
particle cluster. The predicted observations in the image f
to its correct value again. The camera pose estimates aftbe whole particle set can be seen, indicating that the rest
the simulated sudden movement can be seen in Fig. 7. Thethe particle set has locked onto the shadow while the
pose estimate for the system with the recovery module &@ngle particle from the recovery module has locked onto
close to the ‘ground truth’ estimate where the frames werthe true rectangle. After resampling, the whole particle se
not removed. has a better pose estimate since the single particle, with fo
B. Pose Recovery for a Particle Filter successful observations, received a much higher weight.
' ) y . The recovery module could thus be useful for FastSLAM-
Data-driven localisation methods such as the one we haygsed systems as well as the EKF-based one we have used.
described also fit naturally into a particle-filter framewior However, there is a difficulty in deciding exactly how to
At each iteration in a particle filter algorithm, particlesea incorporate the pose suggestion in FastSLAM since the

drawn from a proposal distribution and then reweighte@articles represent trajectories with a map estimate rathe
using image measurements so that the particle set is a vaithn just pose.

approximation of the true posterior. A typical proposatidis o o

bution takes into account the system’s dynamical model arfg Accuracy, Reliability and Timing

associated uncertainty. When the system is “lost”, regover To test the performance of the recovery module we used
occurs if a particle sampled from this proposal distribatio Davison’s system to perform SLAM on a 45-second se-
coincides with the true pose. The likelihood of this is in-quence while the recovery module was run at each frame
creased dramatically if the proposal distribution incogtes without updating the SLAM state. Fig. 9 shows the total time
data driven samples in addition to those generated from tli@ken to recover the pose (red bars) as the size of the map
dynamical prior. This was suggested by (amongst otherf)lue line) increases. The gaps in the sequence are where




the pose was not recovered. In this sequence, the recov e
algorithm succeeded within the time limit of 200ms in 84% 150!
of the frames. The cases where recovery was not possitz
were due to an insufficient number of correct matches beirg '
found, while due to the random nature of the system thel”
will always be cases where a correct choice of matches a

not tried within the time limit. 0

50~

Number of Full Features

) ) 0 200 400 600 800 1000 1200
In the later half of the sequence, the time taken to find th_ Frame Number

pose becomes more erratic. With a larger map, more matckP_elg g

are found, leading to a much larger number of combinationgquence. The number of features in the map (blue line) gasvtise SLAM

of three matches with which to determine potential posesystem runs. The total time taken (red bars) by the recovequte is shown

Therefore, for |arger maps, a method should be used Whi@fﬂen it was successful (in 84% of frames). A large fractiorthi§ time is

The recovery module was run on every frame of a 45rskco

. . . . aken up by the correlation to find feature matches (black)bar
gives a higher probability of selecting a correct set of ¢hre el ( )

matches. We explored weighting the selection according to

co-visibility and correlation score, but did not find thistie . . .
y pose relative to the old map. When this overlap is detected,

computationally effective for small maps. . :
pute y . P . the difference between the current pose estimate and the re-
The time taken for correlation to find potential matches

(black bars) scales linearly with the size of the map anaovered pose indicates the relative orientation and tasiosl
of the two maps. However, this is not enough to align the

the number of Shi-Tomasi features detected in the recove{e{a sin a sinale-camera svstem due to the ambiauity in scale
image. For larger maps, a feature matching algorithm whic P _ 9 Y guity '
Alternatively, the map features themselves could be used

does not scale with map size would be required.

A breakdown of the timing for each aspect of the recover{f?r the alignment. This method would be. robust to sF:aIe
on a typical run (frame 1200) is shown in the table belov\;_ilfference, but unfortunately is not well suited to reahd

Note that the time for generating and evaluating poses c&in9le-camera SLAM systems, where the maps created are
vary, due to the random pose hypothesis creation. purposely very sparse so that the tracking can be done in real
time. With such sparse maps, it is unlikely that there will be

Corner detection 4 ms any features common to both maps, and a minimum of three
Correlation | 88 ms shared features would be needed to specify the alignment.

Three-point-pose and evaluatign 5* ms Instead, we have chosen to use a camera trajectory
Overhead 1 ms common to the two coordinate frames. When the recovery
Total 98 ms module detects that the camera has returned to a region

For the pose to be useful, a low error in the imagén the old map, the recovered pose is used to initialise a
projection is more important than in the 3D position orsecond EKF to track the camera in the old map. Meanwhile,
orientation because, after recovery, the SLAM system cdhe camera motion is still tracked in the current map using
correct the pose if the features are found near where théje first EKF. The camera trajectory in the two maps will
are expected in the image. The search regions are typicah? at different orientations and scales to suit the map, but

of radius of ten pixels, and for this 45-second sequencerucially, the actual camera motion is identical. By finding
the projection error was within ten pixels in 93% of thethe transformation between these trajectories, we find the

successful recoveries. transformation needed to align the two maps.

Davison’s system, when combined with the recovery mod- Note that a trajectory in this context is a sequence of
ule, was found to be very robust to both sudden motion areD poses (position and orientation), not simply a sequence
occlusion. The module is fast enough to allow the combineof positions. To obtain an initial estimate of the alignment
system to be used in real-time although there can be a smtfinsformation, the orientation of the cameras along the
lag, after becoming lost, while the pose is recovered. trajectory is used to estimate the rotation between the two.

A value for the scale is then obtained by measuring the

VI. MAP ALIGNMENT USING THE RECOVERY overall length of the trajectories. Finally, an estimate fo

MODULE the translation offset is determined given the other four

In the normal running of the SLAM system, a quickparameters. This initial estimate is refined via non-linear
rotation can cause the observations to suddenly be of aptimisation of the Mahalanobis distance between pairs of
unmapped region of the world. Pose recovery is of courggoses in the respective trajectories.
not possible at this stage, and instead the SLAM systemWe used Davison's system to make a map using the
should begin a fresh map. Crucially, if the camera returns teequence shown in Fig. 5. Initially, the camera makes a map
an area where the old map is visible, this should be detectefithe region to the left of the office chair. When the camera
and the relative pose of the two maps should be found, suddenly moves to the region to the right of the chair, a
that the maps can be joined. new map is begun. Later in the sequence, the camera pans

While the system is making its fresh map, the recoverpack to the first region as shown in Fig. 5. At this point,
module can be run periodically to try to detect the camerthe recovery algorithm finds a pose for the camera in the
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Fig. 10. Map alignment for two maps generated from differpatts of the sequence in Fig. 5. When the recovery modulectdeteat a previously
mapped region is visible, the system runs SLAM simultanigoimsthe current (redx) and the previous (cyan +) map. The trajectory estimateativel

to the two maps (b) can be aligned (d) to find the relative poskszale of the two maps. After alignment (c), the line of deas from both mapslying
on and near the wall of the room can clearly be made out.

original map made of this region indicating that the map¥ision Lab and the GRPTR team at University of Zaragoza.

have begun to overlap. We gratefully acknowledge the financial support of the
After the overlap is detected, the system tracks the cameE®®SRC (grant GR/T24685 and a studentship to BPW) and

in each map using a different EKF. Fig. 10 shows a top-dowthe Royal Society (International Joint Project).
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